
Object-Oriented Design

 4 - 1

CLASSES AND OBJECTS

●● What is an Object? ●● Relationships Among Classes

●● What is Not an Object? ●● Relationships Between Classes and

●● Kinds of Software Objects Objects

●● Dissecting the Object ●● Roles of Classes and Objects in OOD

●● Relationships Among Objects ●● Building Quality Abstractions

●● What is a Class?

Objectives of Module 4

● Obtain a more complete understanding of classes and objects, the basic building

blocks of software systems developed using object-oriented methods.

● Present and discuss the nature of an object.

● Present and discuss the concept of relationships between objects.

● Present and discuss the nature of a class.

● Present and discuss the concept of relationships between classes.

● Present and discuss relationships between classes and objects and the role of

classes and object in object-oriented design.

● Present and discuss the concept of building classes and objects (abstractions)

with quality in mind, including heuristics for choosing operations, relationships, and

implementations of classes and objects.

Object-Oriented Design

 4 - 2

WHAT IS AN OBJECT?
Object Concept - objects have a permanence and identity apart from any

operation upon them

Informal definition of an object from the perspective of human cognition:

Object - any of the following:

●● a tangible and/or visible thing

●● something that may be apprehended intellectually

●● something toward which thought or action is directed

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 76

Formal definition of an object from the perspective of OOD:

Object - an entity which has state, behavior, and identity; the structure

and behavior of similar objects are defined in their common class; the
terms instance and object are interchangeable

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 77

●● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 3

WHAT IS NOT AN OBJECT?

●● Attributes, such as time, beauty, or color

●● Emotions, such as love or anger

●● Entities which are normally objects but are, instead, thought of as

attributes of objects when a particular problem space is considered

Temperature

Temperature
Sensor

Oven_Temp : TEMPERATURE

 := 350.0; -- degrees F

type SENSOR is record
 Temp : TEMPERATURE;

 Redundancy : MULTIPLEX;
 Location: MEMORY_ADDRESS;
end record;

Oven_Temp : SENSOR := (
 Temp => 350.0, -- degrees F

 Redundancy => TRIPLEX,
 Location => 16#1a0#);

Temperature
as an object

Temperature
as an attribute

of an object

● What is an Object?

●● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 4

KINDS OF SOFTWARE OBJECTS
●● Real-world, tangible objects with boundaries that may or may not be

clearly defined

●● Inventions of the design process which collaborate with other objects

to provide some higher-level behavior

●● Intangible events or processes with well-defined conceptual

boundaries

Tangible

Intangible

Clearly-defined boundaries

No clearly-defined boundaries

Clearly-defined boundaries
No clearly-defined boundaries

Events or processes

Inventions of the design process

● What is an Object?

● What is Not an Object?

●● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 5

DISSECTING THE OBJECT

Formal definition of an object from the perspective of OOD:

Object - an entity which has state, behavior, and identity; the structure
and behavior of similar objects are defined in their common class; the

terms instance and object are interchangeable

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 77

This definition of an object refers to three key features:

●● State

●● Behavior

●● Identity

These key features will be discussed in detail.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

●● Dissecting the Object

❍ State ❍ Identity

❍ Behavior

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 6

DISSECTING THE OBJECT

State

State of an object - encompasses all of the (usually static) properties of the

object plus the current (usually dynamic) values of each of these
properties

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 78

Property or attribute of an object - a part of the state of the object which is

an inherent or distinctive characteristic, trait, quality, or feature that
contributes to making an object uniquely that object

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 78

All properties have some value:

●● a scalar quantity

●● a vector quantity or an object

Because every object has state, every object takes up some amount of
space, be it physical space or computer memory.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

●● Dissecting the Object

❍❍ State ❍ Identity

❍ Behavior

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 7

DISSECTING THE OBJECT

State of an Object - Example

Temperature

Sensor

type TEMPERATURE_SENSOR is record

 Temp : TEMPERATURE; -- degrees F
 Redundancy : MULTIPLEX;

 Location: MEMORY_ADDRESS;
end record;
Oven_Temp : TEMPERATURE_SENSOR := (

 Temp => 350.0, -- degrees F
 Redundancy => TRIPLEX,
 Location => 16#1a0#);

Objects of class TEMPERATURE_SENSOR, such as Oven_Temp, have three

attributes:

●● Temp, a dynamic attribute which changes with time

●● Redundancy, a static attribute (the number of sensed points) which is

fixed when the object is created

●● Location, a static attribute which is fixed when the object is created

Object-Oriented Design

 4 - 8

DISSECTING THE OBJECT

Behavior

Behavior of an object - how an object acts and reacts, in terms of its state
changes and message passing

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 80

Operation -- some action that one object performs upon another in order
to elicit a reaction

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 80

The terms operation and message are interchangeable.

Method -- operation that a client may perform upon an object

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 80

The terms method and member function are interchangeable.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

●● Dissecting the Object

❍ State ❍ Identity

❍❍ Behavior

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 9

DISSECTING THE OBJECT

Behavior of an Object - Example
package Temperature_Sensor is

 type STATUS is (NOT_OK, OK);

 type TEMPERATURE is FLOAT range -400.0 .. 3_000.0; -- deg F

 type MULTIPLEX is (SIMPLEX, DUPLEX, TRIPLEX);

 type MEMORY_ADDRESS is INTEGER range 0 .. 1_024;

 type OBJECT is record

 Temp : TEMPERATURE;

 Redundancy : MULTIPLEX;

 Location : MEMORY_ADDRESS;

 end record;

 function Current_Temperature (Item : in OBJECT)

 return TEMPERATURE;

 function Reliability (Item : in OBJECT)

 return STATUS;

end Temperature_Sensor;

Using the TEMPERATURE_SENSOR Package

with Temperature_Sensor;

with Console;

procedure Show_Oven_Temperature is

 Oven_Temp : Temperature_Sensor.OBJECT :=

 (Temp => 0.0, -- initial dummy condition

 Redundancy => Temperature_Sensor.TRIPLEX,

 Location => 16#1a0#);

begin -- Show_Oven_Temperature

 -- Display the current temperature

 Console.Put("Current oven temperature is ");

 Console.Put (FLOAT(Temperature_Sensor.Current_Temperature

 (Oven_Temp)), 4, 1, 0);

 Console.New_Line;

end Show_Oven_Temperature;

Object-Oriented Design

 4 - 10

DISSECTING THE OBJECT

Behavior - Kinds of Operations

●● Modifier - an operation that alters the state of an object, such as a

get_with_update or put operation

●● Selector - an operation that accesses the state of an object, but does

not alter the state, such as a get operation

●● Iterator - an operation that permits all parts of an object to be accessed

in some well-defined order, such as movement through a linked list

●● Constructor - an operation that creates and object and/or initializes its

state

●● Destructor - an operation that frees the state of an object and/or

destorys the object itself

Object-Oriented Design

 4 - 11

DISSECTING THE OBJECT

Behavior - The Protocol of an Object

Protocol - all of the methods and free subprograms [procedures or

functions that serve as nonprimitive operations upon an object or objects

of the same or different classes] associated with a particular object

-- Grady Booch, Object-Oriented Design with Applications, 1991, Pp 82-83

The protocol of an object defines the envelope of that object's allowable

behavior, comprising the entire external view of the object (both static

and dynamic).

Object-Oriented Design

 4 - 12

DISSECTING THE OBJECT

Behavior - Objects as Machines

Since an object has state, the order in which operations are invoked is
important. This gives rise to the view of an object as an independent

machine. For some objects, time ordering of their operations is so
important that the object's behavior can be formally characterized in
terms of a finite state machine.

Objects may be either active or passive:

●● Active Object - an object that encompasses its own thread of
control

●● Passive Object - an object that does not encompass its thread of
control

Active objects are autonomous, exhibiting a behavior without being
operated upon by another object.

Passive objects can only undergo a state change when explicitly acted
upon.

Object-Oriented Design

 4 - 13

DISSECTING THE OBJECT

Identity

Identity - that property of an object which distinguishes it from all other

objects

-- Khoshafian and Copeland, "Object Identity," SIGPLAN Notices, Volume
21, Issues 11, November 1986, Page 406

The failure to distinguish between the name of an object and the object
itself is the source of many errors in object-oriented programming.

Lifetime of an Object - the time span extending from the time an object

is first created (and consumes space) until that space is reclaimed

Note that an object can continue to exist even if all references to it are
lost.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

●● Dissecting the Object

❍ State ❍❍ Identity

❍ Behavior

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 14

DISSECTING THE OBJECT

Identity - Object Assignment

Object Assignment differs from copying in that in object assignment, the

identity of an object is duplicated by assignment to a second name. Two
names then refer to the same object.

Conventional Assignment refers to the act of copying the state information
of one object into another object. The state of two objects is now the

same, but the state of one object may be changed without affecting the
other.

Identity - Equality

Like assignment, Equality can have two meanings:

●● two names are equal if they designate the same object

●● two names are equal if they designate different objects but their
state is identical

Object-Oriented Design

 4 - 15

RELATIONSHIPS AMONG OBJECTS

An object of and by itself is usually uninteresting. However, a system of
objects, wherein the objects collaborate with one another to define the

behavior of the system, is intensely interesting.

Two kinds of object hierarchies are extensively employed in OOD:

●● Using relationships, where one object employs the resources of

another

●● Containing relationships, where one object contains one or more

other objects

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

●● Relationships Among Objects

❍ Using Relationships

❍ Continaing Relationships

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 16

RELATIONSHIPS AMONG OBJECTS

Using Relationships

Given a collection of objects involved in using relationships, each object
may play one of three roles:

●● Actor - an object that can operate upon other objects but that is
never operated upon by other objects; an active object

●● Server - an object that never operates upon other objects but is only
operated upon by other objects; a passive object

●● Agent - an object that can both operate upon other objects and be
operated upon by other objects; an agent is usually created to do
some work on behalf of an actor or another agent

Whenever one object passes a message to another with which it has a
using relationship, the two objects must be synchronized. In a single
thread of control, a subprogram call is adequate for synchronization.

With multiple threads of control, a more complex method of
synchronization must be devised in order to deal with the problems of
mutual exclusion.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

●● Relationships Among Objects

❍❍ Using Relationships

❍ Containing Relationships

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 17

RELATIONSHIPS AMONG OBJECTS

Using Relationships, Continued

The need for synchronization in an environment involving multiple

threads of control leads to another way to classify kinds of objects:

●● Sequential object - a passive object whose semantics are guaranteed

only in the presence of a single thread of control

●● Blocking object - a passive object whose semantics are guaranteed in

the presence of multiple threads of control

●● Concurrent object - an active object whose semantics are guaranteed
in the presence of multiple threads of control

Object-Oriented Design

 4 - 18

RELATIONSHIPS AMONG OBJECTS

Containing Relationships

In a containing relationship, an object may encapsulate one or more other
objects. Some real-world object relationships are clearly containing

relationships, such as the automobile engine which contains pistons,
spark plugs, etc.

Containing an object rather than using an object is sometimes better

because containing reduces the number of objects that must be
visible at the level of the enclosing object.

Using an object is sometimes better than containing an object because
containing an object leads to undesirable tighter coupling among

objects in some cases.

Intelligent engineering decisions require careful weighing of these two
factors.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

●● Relationships Among Objects

❍ Using Relationships

❍❍ Containing Relationships

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 19

WHAT IS A CLASS?
Class - a set of objects that share a common structure and a common

behavior

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 93

A class represents only an abstraction, whereas an object, an instance

of a class, is a concrete entity that exists in time and space.

What is NOT a Class?

An object is not a class, but a class may be an object (to be discussed

later).

Objects that share no common structure and behavior cannot be

grouped in a class because, by definition, they are unrelated, except

by their general nature as objects.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

●● What is a Class?

❍ The Class as a Contractual Binding

❍ The Interface to a Class

❍ The State of an Object

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 20

WHAT IS A CLASS?

The Class as a Contractual Binding

The class captures the structure and behavior common to all related

objects, serving as a binding contract between an abstraction and all of
its clients.

Strongly typed programming languages can detect violations of the

contract that is a class during compilation.

Two views of a class:

●● Interface - the outside view of a class, emphasizing the abstraction
while hiding the structure and details of how its behavior works

●● Implementation - the inside view of a class, which details the
internal structure of a class and the details of how its behavior
works

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

●● What is a Class?

❍❍ The Class as a Contractual Binding

❍ The Interface to a Class

❍ The State of an Object

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 21

WHAT IS A CLASS?

The Interface to a Class

The interface to a class consists of:

●● primarily, the declarations of all operations applicable to instances of

the class; these operations may be invoked by clients of the class

objects

●● the declaration of other classes

●● constants

●● variables

●● exceptions

The last four are included if they are needed to complete the abstraction.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

●● What is a Class?

❍ The Class as a Contractual Binding

❍❍ The Interface to a Class

❍ The State of an Object

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 22

WHAT IS A CLASS?

The Interface to a Class, Continued

The interface to a class can be divided into three parts:

●● Public - a declaration that is visible to all clients of the objects of a

class

●● Protected - a declaration that is not visible to any other classes

except the subclasses of the class

●● Private - a declaration that is not visible to any other classes

C++ does the best job in allowing a developer to make explicit

distinctions among these different parts of a class interface. Ada

permits declarations to be public or private, but not protected.

Object-Oriented Design

 4 - 23

WHAT IS A CLASS?

The State of an Object

The state of an object is usually represented as constant and variable
declarations placed in the private part of a class interface. This
encapsulates the representation common to the objects of a class,

and changes to this representation do not have a functional affect on
the clients.

Why is the State of an Object

NOT in the Implementation?

Placing state information in the implementation of a class would

completely hide it from the clients, but, with today's technology,
placing state information in the implementation rather than the private
interface of a class would require either object-oriented hardware or

very sophisticated compiler technology. Compiler technology can
solve this problem, but the compiler must be able to discern
information about the size of the object of the class.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

●● What is a Class?

❍ The Class as a Contractual Binding

❍ The Interface to a Class

❍❍ The State of an Object

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 24

RELATIONSHIPS AMONG CLASSES
Three basic kinds of class relationships:

●● generalization - a "kind of" relationship, as a sailboat is a kind of ship

●● aggregation - a "part of "relationship, as a hull is a part of a ship

●● association - a semantic connection among otherwise unrelated classes,

as roses and candles representing different classes that share in

common the fact that we might use them to decorate a dinner table

Object-based and object-oriented programming languages support some

combination of the following relationships to realize the basic kinds of class

relationships:

●● inheritance relationships, which are perhaps the most powerful,

supporting generalization and association

●● using relationships, supporting aggregation

●● instantiation relationships, supporting generalization and association in

a different way from inheritance

●● metaclass relationships, supporting the notion of a class of a class

(classes as objects are made possible)

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

●● Relationships Among Classes

❍ Inheritance ❍ Instantiation

❍ Using ❍ Metaclasses

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 25

RELATIONSHIPS AMONG CLASSES

Inheritance Relationships

Inheritance - a "kind of" relationship among classes wherein one class

shares the structure or behavior defined in:

●● one other class (single inheritance)

●● more than one other class (multiple inheritance)

Superclass - the class from which another class inherits structures

and/or behaviors; a Base Class is the most generalized superclass

Subclass - a class that inherits from one or more other classes, typically

augmenting or redefining the existing structures and behaviors of its

superclasses in itself without affecting the superclasses

The ability of a programming language to support this

kind of inheritance distinguishes object-oriented

languages (which support inheritance) from object-

based languages (which do not support inheritance).

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

●● Relationships Among Classes

❍❍ Inheritance ❍ Instantiation

❍ Using ❍ Metaclasses

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 26

RELATIONSHIPS AMONG CLASSES

Single Inheritance Relationships

Telemetry
Data*

Electrical

Data
Sensor Data*

Propulsion

Data

Spectrometer
Data

Camera
Data

Radiation
Data

Is a
Kind of Is a

Kind of

Is a
Kind of

Is a

Kind of
Is a
Kind of

Is a

Kind of

A simple ERD

showing
relationships
between

different
space craft
data

* Abstract classes, or classes with no instances

Object-Oriented Design

 4 - 27

RELATIONSHIPS AMONG CLASSES

Abstract Classes

Abstract Classes - classes with no instances, written with the expectation

that their subclasses will add to their structures and behaviors, usually

by completing the implementations of their incomplete methods

C++ allows a member function to be defined as a pure virtual function, and

C++ prohibits the creation of instances of classes which contain pure

virtual functions.

Object-Oriented Design

 4 - 28

RELATIONSHIPS AMONG CLASSES

Kinds of Clients

A given class typically has two kinds of clients:

●● Instances

●● Subclasses

This is the motivation behind the three parts of a class definition:

●● Public part - members are visible to both kinds of clients

●● Protected part - members are visible to subclasses only

●● Private part - members are invisible to both kinds of clients

Object-Oriented Design

 4 - 29

RELATIONSHIPS AMONG CLASSES

Inheritance and Encapsulation

Some tension exists between inheritance and encapsulation in that the
use of inheritance exposes some of the internal details of an

inherited class.

This means that to understand the meaning of a
particular class, you must often study all of its

superclasses, sometimes including their inside
views.

Object-Oriented Design

 4 - 30

RELATIONSHIPS AMONG CLASSES

Polymorphism

Polymorphism - a concept in type theory in which a name may denote

objects of many different classes that are related by some common
superclass

Any polymorphic object may respond to some comon set of operations
(defined by the superclass) in different ways.

Is a Kind of

Is a Kind of
Is a Kind of

Communications

Medium
 Operation: Display

GIF Picture

 Operation: Display

Electronic Mail

 Operation: Display

Video Tape

 Operation: Display

Object-Oriented Design

 4 - 31

RELATIONSHIPS AMONG CLASSES

Overloading

Many languages, such as Ada and C++, allow functions and procedures to
have the same name so long as they can be distinguished by their
parameters. There many be many functions named GET or "+", for

instance, but there is only one GET function which gets an integer and
only one "+" function which adds two integers. Such functions and
procedures are said to be overloaded.

There are two kinds of polymorphism, then:

●● ad hoc polymorphism - otherwise known as operator or subprogram
overloading

●● parametric polymorphism - the "class" polymorphism discussed on

the previous transparency

Inheritance without polymorphism is possible, but this kind of inheritance
is not useful.

Polymorphism and late binding go hand in hand.

Object-Oriented Design

 4 - 32

RELATIONSHIPS AMONG CLASSES

Multiple Inheritance

Multiple inheritance comes into play when a class inherits from more than

one superclass. The need for multiple inheritance in object-oriented
programming languages is still a topic of debate.

Multiple Polymorphism

Multiple polymorphism comes hand in hand with multiple inheritance. In

Multiple Polymorphism, the polymorphic function depends on two or
more parameters associated with two or more superclasses.

Displayable_

Object
Display_Device

Video_Tape_
Viewer

Is a Kind of

Object-Oriented Design

 4 - 33

RELATIONSHIPS AMONG CLASSES

Using Relationships

Two kinds of using relationships for classes:

●● a class's interface may use another class, in which case the used class

is visible to the clients of the using class

●● a class's implementation may use another class, in which case the

used class is not necessarily visible to the clients of the using class

Using relationships imply a cardinality:

●● a 1:1 relationship

●● a 1:n relationship, created by establishing friends, which are methods

involving two or more objects of different classes

●● a m:n relationship, also created by establishing friends

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

●● Relationships Among Classes

❍ Inheritance ❍ Instantiation

❍❍ Using ❍ Metaclasses

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 34

RELATIONSHIPS AMONG CLASSES

Instantiation Relationships

Instantiations entail the use of templates which are implemented in one

class to operate on instances of other classes, such as a linked list
class which can create linked lists of integers, floats, strings, files,
databases, etc.

Instantiations are usually realized in the creation of container classes,

which are classes that contain instances of other classes.

Generic Classes or Parameterized Classes - serve as templates for other
classes, such as the class containing a generic sort serving as a

template to sort integers, floats, files, etc.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

●● Relationships Among Classes

❍ Inheritance ❍❍ Instantiation

❍ Using ❍ Metaclasses

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 35

RELATIONSHIPS AMONG CLASSES

Metaclasses

Metaclass - a class whose instances are themselves classes

The three kinds of class relationships discussed so far, namely

inheritance, using, and instantiation, cover all the important kinds of
class relationships that most developers need. The fourth kind of class
relationship, the metaclass, is more exotic and still of a theoretical

nature.

The metaclass allows a programmer to manipulate a class as an object, but
is this of real value?

CLOS supports metaclasses, but Ada and C++ do not directly support

them, altho C++ offers the notion of static member data and functions to
aid in the support of a metaclass.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

●● Relationships Among Classes

❍ Inheritance ❍ Instantiation

❍ Using ❍❍ Metaclasses

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 36

RELATIONSHIPS BETWEEN
CLASSES AND OBJECTS

●● Every object is the instance of some class.

●● Every class has zero or more instances.

●● Classes are static, so their existence, semantics, and relationships are

fixed at compile time.

●● Objects are static or dynamic.

●● The class of most objects is static, meaning that once and object is

created, its class is fixed.

●● Objects are created and destroyed often during the lifetime of an

application program.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

●● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 37

ROLES OF CLASSES AND OBJECTS
IN OOD

During OOA and the early stages of OOD, the developer has two primary

tasks:

●● Identify the classes and objects that form the vocabulary of the problem

domain. These classes and objects are called the key abstractions of the

problem.

●● Invent the structures whereby sets of objects work together to provide the
behaviors that satisfy the requirements of the problem. These structures

are called the mechanisms of the implementation.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

●● Roles of Classes and Objects in OOD

● Building Quality Abstractions

Object-Oriented Design

 4 - 38

BUILDING QUALITY ABSTRACTIONS

In order to build a quality object-oriented system of classes and objects,

we must be able to do several things:

●● Measure an abstraction to determine its quality

●● Apply heuristics for choosing the operations

●● Apply heuristics for choosing the relationships

●● Apply heuristics for choosing the implementations

Classes and objects make up the key abstractions of an object-oriented

system, and the framework for such a system is provided by its

mechanisms.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

●● Building Quality Abstractions

❍ Measuring the Quality of an Abstraction

❍ Operations ❍ Implementations

❍ Relationships

Object-Oriented Design

 4 - 39

BUILDING QUALITY ABSTRACTIONS

Measuring the Quality

of an Abstraction

The design of classes and objects is an incremental, iterative process, and

quality is seldom achieved on a first attempt.

There are five meaningful metrics in assessing the quality of an

abstraction:

●● Coupling

●● Cohesion

●● Sufficiency

●● Completeness

●● Primitiveness

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

●● Building Quality Abstractions

❍❍ Measuring the Quality of an Abstraction

❍ Operations ❍ Implementations

❍ Relationships

Object-Oriented Design

 4 - 40

BUILDING QUALITY ABSTRACTIONS

Measuring Quality, Continued

Coupling is a measure of the strength of association established by a
connection from one module to another in structured design, and it is
a measure of the a similar strength between classes and objects in

object-oriented design.

In OOD, however, coupling and inheritance are at odds with each other.
Strong coupling complicates a structured system, so weakly-coupled

classes are desired. Inheritance, which strongly couples
superclasses and subclasses, however, is also desired to exploit the
commonality among classes.

Cohesion is a measure of the degree of connectivity among the

elements of a single module in structured design, and it is a measure
of a similar strngth among the elements of classes and objects in

object-oriented design.

Coincidental cohesion, in which unrelated abstractions are thrown into
the same class, is undesirable. Functional cohesion, in which
elements of a class work together to provide some well-rounded

behavior, is desirable.

Object-Oriented Design

 4 - 41

BUILDING QUALITY ABSTRACTIONS

Measuring Quality, Continued

Classes should be sufficient, complete, and primitive:

●● By sufficient, the class captures enough characteristics of the

abstraction to permit meaningful and efficient interaction. For
example, a linked list class should allow for adding objects from the
list, but it should also allow for removing objects from the list to be

sufficient.

●● By complete, the class captures all of the meaningful characteristics of
the abstraction. Sufficiency implies a minimal interface, where

completeness implies one that covers all aspects of the abstraction.
Warning: completeness is a subjective concept and can be overdone,
providing much more functionality than needed for an application.

●● By primitive, the operations associated with a class are those that can

be efficiently implemented only if given access to the underlying
representation of the abstraction. An operation that could be
implemented on top of existing primitive operations, but at the cost of

significantly more computational resources, is also a candidate for
inclusion as a primitive operation.

Object-Oriented Design

 4 - 42

BUILDING QUALITY ABSTRACTIONS

Heuristics for Choosing Operations

●● Create fine-grained methods, which are primitive operations that

exhibit small, well-defined behaviors.

●● Separate methods that do not communicate with each other.

●● Design the methods of a class as a whole, because all these methods

cooperate to form the entire protocol of the abstraction.

●● Given a desired behavior, decide in which class to place it based on

the following:

❍❍ Reusability - Would the behavior be more useful in more than

one context?

❍❍ Complexity - How difficult is it to implement the behavior?

❍❍ Applicability - How relevant is the behavior to the class in which

it might be placed?

❍❍ Implementation Knowledge - Does the behavior's

implementation depend upon the internal details of a class?

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

●● Building Quality Abstractions

❍ Measuring the Quality of an Abstraction

❍❍ Operations ❍ Implementations

❍ Relationships

Object-Oriented Design

 4 - 43

BUILDING QUALITY ABSTRACTIONS

Heuristics for Choosing Operations,
Continued

Once an operation is established and defined in terms of its functional
semantics, its time and space semantics must be determined:

●● Synchronous - An operation commences only when the sender has

initiated the action and the receiver is ready to accept the message. The
sender and receiver will wait indefinitely until both parties are ready to

proceed.

●● Balking - Like synchronous, except that the sender will abandon the
operation if the receiver is not immediately ready.

●● Timeout - Like synchronous, except that the sender will only wait for a

specified amount of time for the receiver to be ready.

●● Asynchronous - A sender may initiate an action regardless of whether
the receiver is expecting the message.

Object-Oriented Design

 4 - 44

BUILDING QUALITY ABSTRACTIONS

Heuristics for Choosing Relationships

●● Choosing the relationships among classes and among objects is linked to

the selection of operations, since for one object or class to send a message
to the other, the other object or class must be visible to the first.

Visibility - the ability for one abstraction to access the interface of another

●● Law of Demeter - The methods of a class should not depend in any way on

the structure of another class, except for the immediate (top level) structure
of its own class.

●● Class structures that are wide and shallow usually represent forests of free-

standing classes that can be mixed and matched, and such classes are more
loosely coupled (which is good) but may not exploit all the commonality that
exists (which is bad).

●● Class structures that are narrow and deep represent trees of classes that are

related by a common ancestor, and such classes exploit all the commonality
that exists (which is good) while requiring the user to understand the
meanings of all classes it inherits from or uses (which is bad).

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

●● Building Quality Abstractions

❍ Measuring the Quality of an Abstraction

❍ Operations ❍ Implementations

❍❍ Relationships

Object-Oriented Design

 4 - 45

BUILDING QUALITY ABSTRACTIONS

Heuristics for Choosing
Implementations

●● The implementation can only be designed after the interface is completed.

●● The implementation of a class or object should almost always be

encapsulated in the abstraction, making it possible to change the

implementation without violating the interface to the clients.

●● Implementations should be optimized for operation based on the most

frequent expected use of the abstraction.

●● Examine time versus space constraints to determine how best to implement

the object's state information, particularly when it comes to the tradeoff of

storing state information in the object or computing it when needed.

●● Seek to build functionally cohesive, loosely coupled modules, so trade off the
visibility of abstractions and the concept of information hiding against

cohesion and coupling.

●● Always consider the possiblities of reuse, security, and documentation.

● What is an Object?

● What is Not an Object?

● Kinds of Software Objects

● Dissecting the Object

● Relationships Among Objects

● What is a Class?

● Relationships Among Classes

● Relationships Between Classes and Objects

● Roles of Classes and Objects in OOD

●● Building Quality Abstractions

❍ Measuring the Quality of an Abstraction

❍ Operations ❍❍ Implementations

❍ Relationships

